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The main studies on pitting consist in proposing Markovian stochastic models, based on the

statistics of extreme values and focused on growing the depth of wells, especially the deepest

one. We show that a non-Markovian model, described by a nonlinear Fokker–Planck (nFP)
equation, properly depicts the time evolution of a distribution of depth values of pits that were

experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian

distribution, i.e. a long-tail probability distribution that is the main characteristic of a non-
extensive statistical mechanics. The proposed model, that is applied to data from four inspec-

tions conducted on a section of a line of regular water service in power water reactor (PWR)

nuclear power plants, is in agreement with experimental results.

Keywords: Pitting; non-Markovian; nonlinear Fokker–Planck equation; Tsallis statistics; long-

tail distributions.

1. Introduction

Corrosive processes are the main sources of failures in equipment and structures that

make up an industrial plant and, for these reasons, the study of such processes is a

central research issue for reliability engineering.1 Speci¯cally, it has been of great

interest to analyze corrosion in pipelines since, in any industrial plant, they form a

network to transport di®erent types of °uids that meet the most varied purposes:

transportation of fuels, raw materials and chemical waste, cooling or heating sys-

tems, among others. Over time, corrosive processes of di®erent types were detected
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both on its inner surface by the in°uence of the °uid transported, as well as on the

external surface due to the action of the chemical environment in which the pipeline

is immersed. Thus, there is a signi¯cant reduction in the thickness increasing the risk

of collapse due to possible cracks. Therefore, knowing the dynamics of corrosion

allows the adoption of security policies and more e®ective maintenance, minimizing

the risk of accidents and avoiding production downtime.

According to Burstein et al.,2 the main source of ruptures in pipelines is the

pitting. Besides, according to Valor et al.,3 a stochastic phenomenon characterized

by an initial metastable state was associated with the initial formation of the well,

followed by a stable state due to the growth of the depth of the well over time. In

order to explain these phenomena3,4 based on the statistics of extreme values,5

Markovian models are commonly proposed. These models are focused on growing

deeper wells and the depth values obey the Gumbel distribution of type.6 Recently,

Camacho et al.7 proposes a Markovian model based on the Fokker–Planck equation

that studies the degradation of corroded pipes at nuclear plants. These Markovian

models do not fully explain the experimental data due to presence of long-tail in the

correspondent distributions.

In this paper, we propose a nonlinear Fokker–Planck (nFP) equation as an al-

ternative procedure to the analysis of pitting corrosion. The nFP provides a sto-

chastic distribution compatible with the experimental data of Ref. 7. In steady-state

regime, nFP has as a solution a q-Gaussian distribution of probability that is a

watermark of the nonextensive statistical mechanics proposed by Tsallis.8,9 The

modeling that we propose in this paper, in addition to characterizing a non-Mar-

kovian stochastic process, also provides a best-¯t to the experimental data.

In the next section, the data set to be analyzed is presented and the experimental

conditions are described. The main results obtained from the statistical analysis are

discussed in Sec. 3. A description and interpretation of the proposed model is done in

Sec. 4. The ¯nal conclusions are discussed in Sec. 5.

2. Experimental Data

The studied setup corresponds to water °owing in laminar regime through a stainless

steel pipe of thickness of 6mm. We recall that the measured data set is the same as

used in Ref. 7 and it corresponds to four sets of measurements of depth for 246

corrosion points distributed along a section of 150m. Each series was obtained by a

Pipeline Inspection Gauge (PIG) inspection tool applying the technique of Magnetic

Flux Leakage (MFL). The inspected section corresponds to a range of typical water

service in nuclear power plants Power Water Reactor (PWR) and the inspections

occurred at regular intervals of three years. The distribution of the depths along the

length of the section, for each series is illustrated in Fig. 1.

According to Ref. 7, the used data refer to one of the examples described in the

report produced by the Electric Power Research Institute, EPRI Final Report
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2005,10 whose content presents a series of methods and applications for managing the

life cycle of water service lines in the U.S. nuclear power systems.

3. Pitting Model Based on Tsallis Generalized Statistical Mechanics

3.1. Foundations of generalized statistical mechanics

The generalized statistical mechanics arose in 1988 from the formalism proposed by

Tsallis8 that is based on a nonadditive entropic term as a central postulate, i.e.

Sq ¼
1�PW

i P q
i

1� q
; ð1Þ

where W is the number of microstates accessible to the system, P is the probability

associated with the i-th microstate and q is the so-called entropic index. Equation (1)

de¯nes a physical nonextensive entropy for q 6¼ 1, paving the way for a generalization

of the Boltzmann–Gibbs statistical mechanics, since for q ! 1 the Shannon entropy

is recovered. A probability distribution that maximizes the Tsallis's entropy corre-

sponds to a generalized Gaussian one, commonly called q-Gaussian distribution,9 and

is given by

P ðxÞ ¼ A½1�Bð1� qÞðx� x0Þ2�
1

1�q ; ð2Þ
where A is a normalization constant, B is a scaling factor associated with the

standard deviation of the distribution, and x0 is the average value of the variable x

that characterizes the studied system. The limit q ! 1 in Eq. (2) recovers the

Fig. 1. (Color online) Distribution of depths of corrosion points along a 150m section of a water service

line. Each level observed in the graph corresponds to an inspection by MFL PIG. The four inspections were
conducted over 12 years.
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conventional Gaussian distribution. Currently, the statistical mechanics of Tsallis

consists in a wide ¯eld of research in increasing development, being applied to the

modeling of astrophysical phenomena,11–13 sunspots,14 proteins,15 among others

complex systems.16–20 In particular, we highlight the modeling of anomalous di®u-

sion processes from nonlinear equations which are generalizations of the standard

Fokker–Planck equation.21 Basically, a Fokker–Planck-like equation governs the

dynamical evolution of the probability density that is associated with the charac-

teristic phase space of a stochastic process.

3.2. Proposed pitting model

As illustrated in Fig. 2, the average depths of corrosion points, measured for each of

the four series, describe a linear increase in the time for that the rate was

0:392� 0:003mm/year (mm per year). The Pearson's correlation coe±cient was

R ¼ 0:999 indicating a robust adjustment.

The next step was to characterize the distribution of the depth values as a

function of time, from the analysis of the histograms corresponding to the series.

Figure 3 shows the distribution of depths to the ¯rst inspection carried out after

three years of service. The linear ¯t suggests that the distribution of depths corre-

sponds to a power law. This result implies that shallow wells are quite common at

this stage but deep wells are rare events. For other inspections carried out at 6, 9

and 12 years of service, the distributions of the measured depths are not in agree-

ment with power laws. As illustrated in Fig. 4, the Gaussian distribution (grey line)

does not ¯t well the experimental data. It is important to emphasize that the

Fig. 2. Temporal evolution of the average depth of the wells. The symbols represent the average

(squared) calculated for each of the inspections. The continuous curve is a linear ¯t whose Pearson's

correlation coe±cient is R ¼ 0:999.
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proposed model in Ref. 7 consists of Gaussian distributions of depths, i.e. a

Markovian process. This proposal does not fully agree with the experimental results.

Markovian processes are not well represented by long-tail distributions. It is not

possible to obtain long-tail distributions by only using random processes. The

results shown in Fig. 4 imply that a depth distribution is not characterized as a

random event. In fact, there are long-range correlations in time for the pitting

depths so that the depth-distribution shape behaves as a long-tail distribution.

Therefore, the adoption of a stochastic Markovian model for the study of pitting

could not provide an accurate result. In this context, we propose a formalism from

the Tsallis statistics9 based on a non-Markovian model that is able to describe the

experimental data. The black curves in Fig. 4 show adjustments of Eq. (2) applied

to the inspections.

We brie°y describe the ¯tting procedure used in Fig. 4. We optimized the

�2-value and we use analysis of variance (ANOVA) to validate the hypothesis

testing. Despite the fact that ANOVA test favors the average values (central ones),

the obtained results show that q-Gaussian distributions, i.e. long-tail ones, exhibit

higher Fvalues when compared to Gaussian distributions. Besides, the ¯tting using a

q-Gaussian distribution presents better �2-value and the Pearson correlation coe±-

cient. These results indicate a high reliability in the ¯ttings using q-Gaussian dis-

tribution. Clearly, in this case, these are much more proper than the ¯ttings using the

current Gaussian distribution.

From Fig. 4, it is also observed that the time evolution of the distribution of

depths elapses slowly over time. In this case, it is possible to characterize the pitting

Fig. 3. Depth distribution of corrosion pits in the pipeline after three years of service. The dots represent

the experimental data, with the continuum line being a linear ¯t. The ¯tting suggests that the distribution
is characterized by a power law with Pearson's correlation coe±cient R ¼ 0:98, Fvalue ¼ 155:12 and

Prob > F ¼ 5:9210�5.
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as a quasi-stationary process. On the other hand, the results obtained from the ¯tting

indicate that a long-tail distribution of depths is the proper distribution. We remark

that a q-Gaussian distribution is the long-tail one proposed by our model.

3.3. nFP equation

The Fokker–Planck equation is a continuity equation consisting in a drift term and a

di®usive term. The drift term statistically weighs the action of inhibitory mechan-

isms of the stochastic process and it is coupled up to the emergence of systematic

trends. On the other hand, the di®usive term measures the evolution of the dispersion

(a) (b)

(c)

Fig. 4. Distribution of depths of pits after (a) 6, (b) 9 and (c) 12 years of service. The dots represent the

experimental data, the grey line accounts the ¯t of the Gaussian distribution curve and, in black, the

q-Gaussian distribution ¯t. We recall that the entropic indexes (q), Pearson correlation coe±cient and

ANOVA parameters to q-Gaussian distributions are (a) q ¼ 1:90� 0:05, R ¼ 0:999, Fvalue ¼ 5348:12 and
Prob > F ¼ 0, (b) q ¼ 1:83� 0:06, R ¼ 0:999, Fvalue ¼ 4780:17 and Prob > F ¼ 5:97� 10�12, (c)

q ¼ 2:16� 0:11, R ¼ 0:995, Fvalue ¼ 2584:03 and 5:13� 10�11. On the other hand, the Gaussian best

¯tting presents R ¼ 0:982 and Fvalue ¼ 355:64.
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around the mean value. Plastino and Plastino22 introduced the following one-di-

mensional equation:

@P

@t
¼ � @

@x
½KðxÞP � þ Q

2

@2

@x2
½P 2�q�; ð3Þ

where Pðx; tÞ is the probability density. The ¯rst term is the drift term that accounts

for systematic tendencies present in the process. The parameter KðxÞ is called \drift

coe±cient". The Q parameter is called \di®usion coe±cient" that is constant and

de¯ned positive with the exponent q being the entropic index. The choice of a

nonlinear di®usive term aims to produce P ðx; tÞ solutions whose time dependence is

conditioned to this term in a clear reference to anomalous di®usion. The steady-state

regime corresponds to a system of dynamic equilibrium reached for long times, and

induces a probability distribution independent on time. The condition P ðxÞ ! 0 for

x ! �1, imposed on Eq. (3), provides a generalized exponential as a natural so-

lution for the steady-state regime. Even more, if we consider KðxÞ ¼ ��x that is the

well-known Ornstein–Uhlenbeck process,23 the solution obtained is the q-Gaussian

distribution. According to Schwämmle et al.,24 Eq. (3) is a particular case of a large

class of nonlinear equations of the Fokker–Planck type whose steady-state solutions

maximize the Tsallis entropy. Such a connection is established from the Boltzmann

H theorem.25,26 The nFP can be reformulated to contain a nonlinear drift term. In

this context, the q-Gaussian distribution also is a stationary solution for such an

equation:

@P

@t
¼ � @

@x
½KðxÞPq� þ Q

2

@2P

@x2
: ð4Þ

This equation is not associated with anomalous di®usion since the nonlinearity is not

related to the di®usion term.

In a non-Markovian stochastic processes, the proper use of nFP equations for

modeling is discussed by Frank.23 The proposed generalized form, that is not unique,

is given by,

@

@t
Pðx; tÞ ¼ �

X
i

@

@xi

½Diðx; t;P ÞP ðx; tÞ�

þ
X
i;k

@2

@xi@xk

½Qi;kðx; t;P ÞPðx; tÞ�; ð5Þ

where xðtÞ is a multidimensional random variable P ðx; tÞ is the probability density

function and the generalized coe±cients Di and Qi;k have into account the drift and

the di®usion coe±cients, respectively. Equation (5) is linear and corresponds to drift

and di®usion processes. In this context, the corresponding coe±cients do not depend

on the probability density distribution, P . When the generalized coe±cients Di and

Qi;k explicitly depend on P ðx; tÞ, the solution of nFP equation will be the proper

solution for modeling stochastic non-Markovian processes. However, a licit way to

Non-Markovian model for the study of pitting corrosion in a water pipe system

1550119-7

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
5.

26
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

U
N

D
A

C
A

O
 O

SW
A

L
D

O
 C

R
U

Z
 o

n 
06

/0
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



establish the dependence of those coe±cients with P ðx; tÞ is the main task of this

approach. In this context, Eqs. (3) and (4) are in correspondence to the conditions:

Dðx; t;PÞ ¼ KðxÞ;
Qðx; t;P Þ ¼ ðQ=2ÞP 1�q;

�
ð6Þ

Dðx; t;PÞ ¼ ��xPq�1;

Qðx; t;P Þ ¼ Q=2:

�
ð7Þ

By considering an Ornstein–Uhlenbeck-type process in the Fokker–Planck equation,

Plastino and Plastino proposed the following time-dependent solution:

P ðx; tÞ ¼ DðtÞ½1� �ðtÞð1� qÞðx� x0ðtÞÞ2�
1

1�q ; ð8Þ
that emerges from Eq. (3) when Eq. (8) is applied. The detailed development was

derived in Ref. 22. However, the analogy with an anomalous di®usion process is not

consistent since the standard deviation does not change signi¯cantly for the four

series. This restriction does not apply to Eq. (4). From numerical integration,

Schwämmle et al.24 calculated the probability distribution for Eq. (4) analyzing their

second-order moments and varying the entropic index for values in the range

0:7 � q � 1:5.

3.4. Non-Markovian model and corrosion by pites

A non-Markovian process is one for which future probabilities are not determined by

the most recently known value, and depend on the previous history. The proposed

model describes this type of process. Thus, let us consider the current probability

density jðx; tÞ given by:

jðx; tÞ ¼ � �ðx� x0Þ½P ðx; tÞ�q þ Q

2

@

@x
P ðx; tÞ

� �
: ð9Þ

Replacing Eq. (9) in Eq. (4), we recover the one-dimensional continuity equation in

its most usual form, i.e.:

@

@t
Pðx; tÞ þ @

@x
jðx; tÞ ¼ 0: ð10Þ

The current density must vanish for the stationary regime, which ensures the con-

dition PðxÞ ! 0 as x ! �1. Thus, we have the equation:

dP

dx
¼ � 2�

Q
ðx� x0ÞPq: ð11Þ

And for q 6¼ 1, the proper solution is:

P ðxÞ ¼ A½1�Bð1� qÞðx� x0Þ2�
1

1�q ; ð12Þ
where B ¼ ð�=QÞ½A1�q�. From the numerical calculations we obtained that the three

analyzed series have values for the entropic index within the range 1 < q < 3. Under
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this condition it is easy to verify that the mean value is equal to x0 and the nor-

malization constant A is given by:

A ¼ ðq� 1Þ�
�Q

� �1
2 �ð�Þ
�ð�� 1Þ

( ) 2
3�q

; ð13Þ

where � ¼ 1
ðq�1Þ and �ðxÞ is the gamma function. The result given by Eq. (12) sup-

ports a non-Markovian model related to the long-tail distribution obtained for the

pitting corrosion.

4. Conclusion

In this paper, we have shown that a non-Markovian stochastic model can describe

the temporal evolution of the pit-depths distribution based on nonextensive statis-

tical mechanics. This model describes the dynamic development of pitting corrosion

with a nonlinear shape of the Fokker–Planck equation, whose q-Gaussian distribu-

tion is the solution for the steady-state regime. This class of distribution ¯ts better

the experimental data than Markovian models. Besides, the proposed model has

better accuracy to map the experimental values that are in the tail of the distribution

curve. That said, the proposed model is able to model pitting corrosion in pipelines.

Finally, the Markovian model does not provide a good agreement with the experi-

mental data for the temporal evolution for quasi-stationary processes.
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