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a b s t r a c t

In this paper, a new coefficient is proposed with the objective of quantifying the level of
cross-correlation between nonstationary time series. This cross-correlation coefficient is
defined in terms of the DFA method and the DCCA method. The implementation of this
cross-correlation coefficient will be illustrated with selected time series.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There is a large number of situations, whether in the real world or not, where a given observable yi is measured at
successive time intervals, forming a time series {yi} [1]. Many of these time series are recorded simultaneously, and have
the same length N . Some strategies for time series analysis have been developed. The most popular is the measurement of
the Pearson correlation coefficient. However, this coefficient is not robust [2] and can bemisleading if outliers are present, as
in real-world data characterized by a high degree of nonstationarity [3]. Then, other statistical methods can be proposed for
time series analysis [4,5]. However, if the time series exhibit complex behavior, such as self-affinity, we can characterize the
auto-correlation (cross-correlation of the signal with itself) by power-laws [6,7]. In this way, we can identify universality for
different kinds of problems [8,9]. Hurst was one of the first to identify a power-law in a real-world time series, specifically
studying the Nile river and problems related to water storage, by R/S analysis [10]. He found that many records are very
well described by the empirical relation R/S ∼ nH , where n is a time scale and H is the Hurst exponent. The values of the
Hurst exponent range between 0.0 and 1.0. In terms of auto-correlations,H = 0.5 indicates that there is no auto-correlation
in time series. If 0.5 < H < 1.0, we have long-range auto-correlations with persistent behavior, and if 0.0 < H < 0.5,
we have long-range auto-correlations with anti-persistent behavior. Recently, many other papers have been investigated
in order to investigate long-range auto-correlations in time series with new ideas, such as the DNA Walk method [11,12].
But an alternative method, Detrended Fluctuation Analysis (DFA), cited ≈ 1054 times, has been proposed to detect long-
range auto-correlations embedded in a patch landscape and also avoids the spurious detection of apparent long-range auto-
correlations [13]. The DFAmethod performs better than either the standard R/S analysis or the DNAwalk in quantifying the
scaling behavior of noisy signals for a wide range of correlations [14,15].

2. Discussion

TheDFAmethod provides a relationship between FDFA(n) (rootmean square fluctuation) and the scale n, characterized for
a power-law FDFA(n) ∝ nα . In this way, α is the long-range auto-correlation scaling exponent, such that if α = 0.5 the signal
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Fig. 1. Time series analysis in the simulated time series by the ARFIMA process. (a) Exhibit the DFA auto-correlation FDFA×n in log–log scale for the original
time series {yRand1} (∗), {yRand2} (�), and respectively their transformed, i.e., time series 1 with ρ = 0.1 (⃝), and time series 2 with ρ = 0.4 (�). These time
series are very well fitted by power-laws FDFA ∼ nα , with α = 0.5 (for the original random time series), α = 0.6 (time series 1), and α = 0.9 (time series
2). (b) Show the detrended cross-correlation covariance F 2

DCCA × n for: (i) ρ = 0.1 (time series 1), ρ = 0.4 (time series 2), with W = 1.0 and εi ≠ ε′

i (∗),
(ii) ρ = 0.1 (time series 1), ρ = 0.4 (time series 2), with W = 0.85, and εi ≠ ε′

i (�), and (iii) for ρ = −0.1 (time series 1), ρ = 0.4 (time series 2), with
W = 0.80 and εi = −ε′

i (⃝). Finally, (c) gives the DCCA cross-correlation coefficient σDCCA as a function of n for the time series analyzed in (b) case. The
value σDCCA = 1 implies a perfect cross-correlation (upper solid line in the figure), σDCCA = −1 implies a perfect anti cross-correlation (lower solid line),
and σDCCA = 0 implies that there is no cross-correlation (middle solid line).

is uncorrelated, if α < 0.5 the signal is anti-persistent, and α > 0.5 represents a persistent signal. Now if we have two time
series, {yi} and {y′

i}, respectively, the study of cross-correlation between these time series can be applied. For example, in
the case of cross-correlations in finance many papers have been analyzed [16–23]. However, we can apply a generalization
of the DFA method, called Detrended Cross-Correlation Analysis method (DCCA) [24] to study cross-correlations between
time series. In the DCCA paper, the authors illustrate the method by selected examples from physics, physiology, and
finance, where they reported power-law cross-correlations in absolute values of logarithmic changes in price between
Dow Jones and NASDAQ. In Ref. [25] the authors found power-law magnitude cross-correlations between absolute values
of price changes and trading-volume changes. The DCCA method is designed to investigate power-law cross-correlations
between different simultaneously recorded time series of equal length N , in the presence of nonstationarity, by means of
the detrended covariance function F 2

DCCA(n). If long-range cross-correlation appears between these two time series then
FDCCA ∼ nλ, with λ ≈ (αDFA + α′

DFA)/2. In the case of cross-correlation between {yi} with itself, the detrended covariance
function F 2

DCCA(n) reduces to the detrended variance function F 2
DFA(n) [24]. The λ exponent quantifies long-range power-law

correlations and also identifies seasonality [26], but λ does not quantify the level of cross-correlations. Moreover, according
Zho [27], there is no clear relationship between λDCCA and αDFA. An immediate question arises, is it possible to quantify the
level of cross-correlation with the DFA and the DCCAmethod? The answer is yes, and to discuss this question, in this paper a
new coefficient is proposed. The DCCA cross-correlation coefficient is defined as the ratio between the detrended covariance
function F 2

DCCA and the detrended variance function FDFA, i.e.,

σDCCA ≡
F 2
DCCA

FDFA{yi}
FDFA{y′

i}. (1)
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Fig. 2. DCCA cross-correlation coefficient for a simultaneous climate surface data record, collected every hour by the INMET meteorological station in the
city of Salvador, Bahia (Brazil). These data were recorded from 12 March 2010 to 10 June 2010. In this figure we have σDCCA = 1 for: air temperature ×

solar radiation (�), air temperature × relative humidity (•), relative humidity × solar radiation (◦), and wind speed × wind direction (�). Vertical dashed
lines correspond to one day and one week respectively in time scale.

Table 1
σDCCA in terms of level of cross-correlation.

σDCCA Condition

1 Perfect cross-correlation
0 No cross-correlation

−1 Perfect anti cross-correlation

Eq. (1) leads to a new scale of cross-correlation in nonstationary time series. Here, σDCCA is a dimensionless coefficient that
ranges between −1 ≤ σDCCA ≤ 1. A value of σDCCA = 0 means there is no cross-correlation, and it splits the level of
cross-correlation between the positive and the negative case (see Table 1).

3. Results

With the objective of testing the utility of the DCCA cross-correlation coefficient, selected time series, σDCCA as a function
of n is presented below. Firstly, σDCCA was tested for simulated time series generated by using a two-component fractionally
autoregressive integratedmoving average (ARFIMA) stochastic process, in order to investigate power-law auto-correlations
and power-law cross-correlations, in this case each variable depends not only on its own past, but also on the past values of
the other variable [28,29],

yi = W
∞−
n=1

an(ρ1)yi−n + (1 − W )

∞−
n=1

an(ρ2)y′

i−n + εi,

y′

i = (1 − W )

∞−
n=1

an(ρ1)yi−n + W
∞−
n=1

an(ρ2)y′

i−n + ε′

i . (2)

Here, εi and ε′

i denote two independent and identically distributed (i.i.d.) Gaussian variables with zero mean and unit
variance, an(ρ) are statistical weights defined by an(ρ) = Γ (n − ρ)/(Γ (−ρ)Γ (1 + n)), where Γ denotes the Gamma
function, ρ are parameters ranging from −0.5 to 0.5 (related to the DFA exponent, α = 0.5 + ρ [28,29]), and W is a free
parameter ranging from 0.5 to 1.0 and controlling the strength of power-law cross-correlations between yi and y′

i . By using
the two-component ARFIMA process of Eq. (2), we generate a new time series yi and y′

i [30] characterized by different values
of an(ρ1,2) and W . In this sense, taking into account the ARFIMA process, was tested the value of σDCCA for extreme cases
where there are (or not) cross-correlations between the time series, specifically where we have perfect cross-correlation,
perfect anti cross-correlation, and no cross-correlation. Therefore, for ρ = 0.1 (time series 1), ρ = 0.4 (time series 2),
W = 0.5 (maximum strength of power-law cross-correlations), and εi = ε′

i , we have a perfect cross-correlation σDCCA = 1
(△ in Fig. 1(c)). In the case of ρ = 0.1 (time series 1), ρ = 0.1 (time series 2), W = 1.0 (minimum strength of power-law
cross-correlations), and εi = −ε′

i there is a perfect anti cross-correlation σDCCA = −1 (∇ in Fig. 1(c)). Now, in the case
of ρ = 0.1 (time series 1), ρ = 0.4 (time series 2), W = 1.0 and εi ≠ ε′

i there is no cross-correlation σDCCA = 0 (∗
in Fig. 1(c)). These results are entirely in agreement with Refs. [24,28,29]. The next step was to test the loss (expansion) of
cross-correlations, and for this purpose a two-component ARFIMA stochastic process was generated. Initially, the expansion
of cross-correlations between the time series, i.e., for ρ = 0.1 (time series 1), ρ = 0.4 (time series 2),W = 0.85, and εi ≠ ε′

i
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Fig. 3. DCCA cross-correlation coefficientσDCCA for Dow Jones andNASDAQOpen–Close indices. (a) Gives the individual index between opening and closing
of trading, more specifically for Dow Jones (�) and NASDAQ (�). The inset figure to the left gives a log–log plot of FDFA ×n, with long-range power-law DFA
exponents αDJopen = αDJclose = 1.47 and αNDopen = αNDclose = 1.50. In the right position in this figure we have a log–log plot of F 2

DCCA × n with λ� = 1.50
and λ� = 1.50. (b) The cross-correlations between Dow Jones and NASDAQ Opening (�) and also Dow Jones and NASDAQ Closing (�). The inset figure
gives a log–log plot of F 2

DCCA × n with long-range cross-correlation power-law DCCA exponents λ� = 1.49 and λ� = 1.51.

Table 2
Mean values of σDCCA , with seasonal components.

Cross-correlation n ≤ 24 n ≥ 168

Air temperature × solar radiation 0.81 0.68
Air temperature × relative humidity −0.88 −0.59
Relative humidity × solar radiation −0.64 −0.49
Wind speed × wind direction 0.05 0.52

was simulated. We can see that there is long-range cross-correlation between these time series (Fig. 1(b) (�)), but because
W = 0.85 this cross-correlation is not perfect (Fig. 1(c) (�)). Afterwards, the negative case (anti cross-correlation), with
cross-correlations loss was tested too, and for this case ρ = −0.1 (time series 1), ρ = 0.4 (time series 2), W = 0.80 and
εi = −ε′

i . Again, there is long-range cross-correlation between these time series (Fig. 1(b) (⃝)). But, even starting from
σDCCA = −1, the final value of σDCCA is below 0, because W = 0.80 (Fig. 1(c) (⃝)). Thus, if we intend to quantify the
level of cross-correlation, it will be impossible to use only the DCCA method, while σDCCA gives us this information directly
(see Fig. 1(c)). We can see the potential utility of σDCCA in the next two real examples, the first produced by climatology
and the second produced by the stock market. The first example, for climatological time series analysis, comes from the
Brazilian National Institute of Meteorology, INMET [31], which is an important institute that has data in accordance with
the World Climate Program [32]. INMET has 447 climatological stations working in all Brazilian territories. A climatological
station consists of a central memory unit (‘‘data logger’’) connected to various sensors of the meteorological parameters,
integrating the observed values automatically every hour. In this paper we chose the climatological station in the city of
Salvador (Bahia, Brazil), located at S 13.0053°, W 58.5058°, 51.41 m above sea level. The data are from 13 March 2010 to 10
June 2010,withN = 2173points. In this station five variables aremeasured simultaneously every hour: air temperature (°C),
relative humidity (%), solar radiation (kJ/m2), wind speed (m/s), and wind direction (°). Then, the DCCA cross-correlation
coefficient σDCCA was calculated between: air temperature × solar radiation (�), air temperature × relative humidity (•),
relative humidity× solar radiation (◦), andwind speed×winddirection (�); see Fig. 2. In this figurewe can identify positive,
negative, and also zero cross-correlations. Now, if we check the cross-correlation between air temperature and humidity,
we can identify σDCCA < 0 (anti cross-correlated) and it is not perfect (mainly for large n); see Fig. 2 (•). Similar results are
found if we analyze the cross-correlation between relative humidity and solar radiation (Fig. 2 ⃝), but with a lower level
of cross-correlation. The cross-correlation between air temperature and solar radiation is always positive and not perfect
(Fig. 2 �), while there is no cross-correlation between wind speed and wind direction until n ≃ 100 (Fig. 2 �). Finally, if we
look at σDCCA in terms of n, we can identify seasonal components. Seasonality is most evident for n = 24 (day scale) and
n = 168 (week scale) (see Fig. 2 vertical lines). In this way we can compose Table 2.

The last example is associated with the daily opening and closing values of the Dow Jones and the NASDAQ stock market
indices, collected from 11 October 1984 to 5 May 2010. Fig. 3 depicts a complete overview for DFA, DCCA, and σDCCA.
Specifically, σDCCA for the Dow Jones (Open × Close) (�) and NASDAQ (Open × Close) (�) have the same behavior; see
Fig. 3(a). Again, in this figure we can identify seasonal components, i.e., n = 30 (onemonth) divides σDCCA into perfect cross-
correlation (n > 30) or not (n < 30). Fig. 3(b) describes the cross-correlation between (Dow Jones × NASDAQ) Open–Open
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(�) aswell as (Dow Jones×NASDAQ) Close–Close (�). This figure informsus that ifwe analyze the cross-correlation between
the Dow Jones and NASDAQ for opening or the Dow Jones and NASDAQ for closing, we have the same behavior, but with
seasonal components at n = 365 (one year). Thus, σDCCA ≃ 0.5 for n < 365 and σDCCA → 1.0 (perfect cross-correlation) for
n > 365.

In conclusion, this paper proposes a new cross-correlation coefficient, defined by σDCCA in order to quantify the level
of cross-correlation between nonstationary time series. The coefficient σDCCA is based on the DFA and the DCCA method. It
proved to be robust, and also succeeded in identifying seasonal components, in both types of cross-correlations, positive and
negative. For this purpose σDCCA was tested in selected nonstationary time series (simulated and real). Finally, is possible to
generalize σDCCA to multi-time series analysis, in a possible DCCA cross-correlation matrix.
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