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h i g h l i g h t s

• We establish the relationship between homicides and attempted homicides by DFA, DCCA, and DCCA cross-correlation coefficient.
• DCCA cross-correlation coefficient identifies a positive cross-correlation.
• The DFA analysis can be more informative depending on time scale (short or long).
• For short scale DFA did not identify auto-correlations, and for long scales DFA presents a persistent behavior.
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a b s t r a c t

We propose in this paper to establish the relationship between homicides and attempted
homicides by a non-stationary time-series analysis. This analysis will be carried out
by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA),
and DCCA cross-correlation coefficient, ρDCCA(n). Through this analysis we can identify
a positive cross-correlation between homicides and attempted homicides. At the same
time, looked at from the point of view of autocorrelation (DFA), this analysis can be more
informative depending on time scale. For short scale (days), we cannot identify auto-
correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time
scales (n > 90 days) DFA presents a persistent behavior. Finally, the application of this new
type of statistical analysis proved to be efficient and, in this sense, this paper can contribute
to a more accurate descriptive statistics of crime.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to political, economic and social factors, crime has been studied and statistically modeled by many researchers. For
example, it is possible to statistically measure the connection between unemployment and crime [1–3], the correlation be-
tween firearms and homicides [4], make a descriptive study of homicides considering author and victim [5], evaluate crime
rates through probabilistic models [6], perform a temporal and spatial study of crime [7,8], analyze the flux of tourists and
increase in crime [9], simulate computationally criminal activity in an urban environment [10], among others. In this way
it is possible to say that crime can be modeled based on the author–victim profile, time, and geographic location, as well
as, other variables. This paper aims to detect and measure the auto-correlation and the cross-correlation of homicides and
attempted homicides in the city of Salvador, located in the state of Bahia (Brazil). Salvador (12°59′S, 38°29′W) is one of
the largest cities in Brazil, with more than 2.7 million people, and with 3787 people per square kilometer [11]. It is worth
mentioning that Salvador will host six matches of the 2014 FIFA World Cup Brazil.
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The crime was studied in terms of homicides and attempted homicides because these are crimes against people and are
widely used in empirical studies about the determinants of crime. In this sense Fig. 1 shows the time-series of homicides
and attempted homicides per 100,000 citizens. In this figure we can see large irregularities (unpredictable), characteristic of
a nonlinear system. Such systems have been studied from the point of view of complex systems. The complex systems are
studied inmany areas of the natural sciences,mathematics, and the social sciences [12–14]. Complex systemshave nonlinear
behavior, and can be studied by taking into account the properties of fractals [15], such as self-affinity in time series. If, for
example, in a given time-series {u(i)} [16] self-affinity appears, then long range power-law correlations are present [17–19].
This makes the study of complex systems very interesting, because it is possible to identify a universality in different kinds
of problems [20,21]. It is known that, in the real world, data are highly non-stationary [22], andmany conventional methods
of analysis are not suited for non-stationary time-series [23].

For non-stationary time-series, we did our analysis in the point of view of Detrended Fluctuation Analysis, DFA [24],
Detrended Cross-Correlation Analysis, DCCA [25], and DCCA cross-correlation coefficient, ρDCCA [26]. Thus, the rest of the
paper is laid out as follows: Section 2 provides a brief theoretical review of these methods. Section 3 describes the data used
in this paper and presents our results and, finally, Section 4 concludes the paper.

2. Brief review of DFA, DCCA, and ρDCCA

There are situations where a given observable u(i) is measured at successive time intervals, forming a time-series {u(i)}
[16]. Some strategies for time-series analysis have been developed [22,23,27–38]. Today, one of the most popular methods
for nonstationary time-series analysis is the Detrended Fluctuation Analysis (DFA) and will be briefly presented below.

2.1. The DFA method [24]

TheDFAmethodwas developed to analyze long-range power-law correlations in non-stationary systems like in Refs. [24,
29,33,39–47], among others. The DFA method involves the following steps: (see Fig. 2) or Ref. [48].
1. Consider a correlated signal u(i) (daily homicides, attempted homicides), where i = 1, . . . ,Nmax (the total number of

points in the series).We integrate the signal u(i) and obtain y(k) =
k

i=1 u(i)−⟨u⟩, where ⟨u⟩ stands for the average of u;
2. The integrated signal y(k) is divided into boxes of equal length n;
3. For each n-size box, we fit y(k), using a polynomial function of order l, which represents the trend in the box. The y co-

ordinate of the fitting line in each box is denoted by yn(k), since we use a polynomial fitting of order l, we denote the
algorithm by DFA-l;

4. The integrated signal y(k) is detrended by subtracting the local trend yn(k) in each box (of length n);
5. For a given n-size box, the root-mean-square fluctuation, F(n), for this integrated and detrended signal is given by

FDFA(n) =

 1
Nmax

Nmax
k=1

[y(k) − yn(k)]2. (1)

6. The above computation is repeated for a broad range of scales (n-sizes box) to provide a relationship between F(n) and
the box size n.

In accordance with Refs. [24,48], in this paper we used a polynomial fitting of order 1, with n = 4 for the smallest and
n = Nmax/4 for the largest box width. Thus, the DFA method provides a relationship between FDFA(n) (root mean square
fluctuation) and the time scale n, characterized by a power-law:

FDFA(n) ∝ nα. (2)

In thisway,α is the scaling exponent, a self-affinity parameter representing the long-range power-law correlation properties
of the signal; such that if α = 0.5, then the signal is uncorrelated; if α < 0.5, then the correlation in the signal is anti-
persistent; and if α > 0.5, then the correlation in the signal is persistent.

However, we know that many observables can be measured and recorded simultaneously, at successive time intervals,
forming time-series with the same length N [16]. For example, if we have two time-series, then the analysis of the cross-
correlation between these time-series can be carried out. Naturally, in the next section, we apply a generalization of the DFA
method, called detrended cross-correlation analysis (DCCA), to study the long range cross-correlations in the presence of
non-stationarity [49–59].

2.2. The DCCA method [25]

Given two time-series, {u1(i)} and {u2(i)}, we compute the integrated signals R1(k) ≡
k

i=1 u1(i) and R2(k) ≡
k

i=1 u2(i),
where k = 1, . . . ,Nmax. Next,we divide the entire time-series into (N−n) overlapping (or not) boxes, each containing (n+1)
values. For both time series, in each box that starts at i and ends at i+n, we define the local trend,R1,i(k) andR2,i(k) (i ≤ k ≤

i+n), to be the ordinate of a linear least-squares fit.Wedefine the detrendedwalk as the difference between the originalwalk
and the local trend. Next,we calculate the covariance of the residuals in each box f 2DCCA(n, i) ≡ 1/(n+1)

i+n
k=i(R1(k)−R1,i(k))
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Fig. 1. (Color online): time series of victims/100,000 citizens in Salvador between January 2004 and December 2011 for: (a) homicide and (b) attempted
homicide. Continuous line represents the moving average for n = 90 days.

Fig. 2. (a) Time series of daily homicides in the city of Salvador, Bahia (Brazil) for data recorded between January 2004 and December 2011. (b) Integrated
time series y(k) of the original data, showing the application of the DFA algorithm. In this case the continuous line in each box, with n = Nmax/4 = 730,
represents the linear adjust (detrended).

(R2(k) −R2,i(k)). Finally, the detrended covariance function is calculated by summing over all overlapping (N − n) boxes of
size n,

F 2
DCCA(n) ≡ (N − n)−1

N−n
i=1

f 2DCCA(n, i). (3)

If self-affinity appears, then a power-law exists in the cross-correlations, in other words,

F 2
DCCA(n) ∼ n2λ, (4)

where λ is the long range power-law cross-correlation exponent. Supposing (R1(k) = R2(k)), the detrended covariance
F 2
DCCA(n) reduces to the detrended variance F 2

DFA(n) used in the DFA method. According to Podobnik and Stanley [25], in
general, λ tends to be the mean value of DFA exponents, e.g.,

λ ≈
(α1 + α2)

2
. (5)
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Table 1
ρDCCA in terms of the level of cross-correlation.

ρDCCA Condition

1 Perfect cross-correlation
0 No cross-correlation

−1 Perfect anti cross-correlation

Table 2
Descriptive statistics for homicides and attempted homicides registered in the
city of Salvador, the state of Bahia (Brazil), from January 2004 toDecember 2011.

Measure Homicide Attempted homicide

Average (sd) 3.60 (2.52) 2.34 (2.05)
Sum 10,529 6853
Skewness 0.90 1.37
Kurtosis 0.99 2.71
Minimum (maximum) 0 (16) 0 (15)

We can point out other methods of estimation of the λ [60–63]. The exponent λ quantifies the long range power-law
correlations and also identifies seasonality [59]. But, λ does not quantify directly the level of cross-correlation. In this case it
is possible to quantify the level of cross-correlationwith the DCCA cross-correlation coefficient, defined as the ratio between
the detrended covariance function F 2

DCCA(n) and the detrended variance function FDFA(n), which will be presented below.

2.3. The DCCA cross-correlation coefficient [26]

The cross-correlation coefficient was defined in order to quantify the level of cross-correlation between non-stationary
time-series. The DCCA cross-correlation coefficient is defined as the ratio between the detrended covariance function F 2

DCCA
and the detrended variance function FDFA of {u1(i)} and {u2(i)}, i.e.,

ρDCCA(n) ≡
F 2
DCCA(n)

FDFA{u1}
(n) FDFA{u2}

(n)
. (6)

Eq. (6) leads us to a new scale of cross-correlation in non-stationary time-series. Here, ρDCCA(n) is a dimensionless coefficient
that ranges between −1 ≤ ρDCCA(n) ≤ 1. A value of ρDCCA(n) = 0 means there is no cross-correlation, and it splits the level
of cross-correlation between the positive and the negative case (see Table 1).

The detrended coefficient ρDCCA(n) has been tested on simulated and real time-series [26,64–69]. Besides, the statistical
results of ρDCCA(n) have been compared with the Pearson correlation coefficient for time-series in the US stock market [70].
Also, it is possible to think in terms of the derivative of ρDCCA(n) coefficient, with a well-defined relationship between αDFA
and λDCCA [71].

3. Data and results

These data are based on the police records made daily in police stations by citizens and obtained via Secretariat of Public
Security of the State of Bahia (Brazil), from January 2004 toDecember 2011 [72]. As a first formof data analysis, Fig. 1 presents
the daily rate of victims. There is an evident growth of the homicide rate (+), butwe cannot say the same thing for attempted
homicides (∗). Looking at Fig. 1, we do not know whether to say there is a relationship between these variables. In order to
determinewhether there is such a relationship,we present the descriptive statistics in Table 2. The time-series for homicides
(attempted homicides) has an average of 3.60 (2.34) occurrences per day. Both variables showed positive skewness, and the
highest occurrence of homicides (attempted homicides) is 16 (15) victims per day. As per information about the behavior
of these non-stationary time-series, the continuous line in Fig. 1 represents the moving average (with n = 90) of the rate of
victims. This analysis smooths the stronger oscillations and makes it easier to understand the behavior, positive or negative
trends, of the variables. Fig. 3, shows a classical signal analysis with the autocorrelation function (periodogram) and the
Fourier transform (amplitude). We can identify a clear periodicity, seven days, but for long-time scale it was not possible
to identify other periodicities. Our proposal is to analyze these time-series with new feature, and if we analyze these time
series by DFA, DCCA, and ρDCCA, then we can make new conclusions, as will be shown here.

Fig. 4 and Table 3 show the values of the DFA exponent for homicides, α+, attempted homicides, α∗, and DCCA cross-
correlation exponent, λ. In this way we can estimate if the time-series exhibit persistent, anti-persistent, or uncorrelated
behavior.

For both time-series (crimes) we can identify interesting situations. Firstly, there is some cross-correlation between the
series, because FDCCA(n) ≠ 0 (◦, in Fig. 4). Next, we can identify seasonal components (vertical lines), i.e., for: n ≤ 7, 7 ≤ n ≤

30, 30 ≤ n ≤ 90, 90 ≤ n ≤ 365, and finally n ≥ 365 days. Evenmore, there is a transition of behavior between these series,
depending on the time scale. Therefore, the DFA auto-correlation exponent can be αDFA ≈ 0.5 (no memory), αDFA < 0.5
(anti-persistent), or αDFA > 0.5 (persistent). In other words, for n ≤ 7, the crime occurs randomly, i.e., αDFA ≃ 0.5 (see
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Fig. 3. Traditional signal process for homicides (left) and attempted homicides (right). In this case (a) and (b) represent the amplitude spectrum for Fourier
transform and (c) and (d) the auto-correlation function. Vertical lines in this figure represent 7 days.

Fig. 4. Detrended variance FDFA(n) for homicide (+), attempted homicide (∗), and detrended covariance FDCCA(n) between homicides and attempted
homicides (◦), as functions of n. Vertical lines represent the time scale. At each interval we print the values of the coefficients.

Table 3). For 7 ≤ n ≤ 30, the crime is anti-persistent, this means that homicides had α+ = 0.39 and α∗ = 0.42 for
attempted homicides. Now, if we look at the crosshatched column in Fig. 4, between 30 ≤ n ≤ 90 days, there is an anti-
persistent/persistent transition, and n = 90 apparently represents the point for this transition (see Fig. 4).

It is worth mentioning here that the effect of trends on DFA was studied in Ref. [73]. In this paper Hu et al. showed that
the DFA method performs better than the standard R/S analysis to quantify the scaling behavior of noisy signals for a wide
range of correlations, and we estimate the range of scales where the performance of the DFA method is optimal.

Taking into account that we have identified a cross-correlation between the time-series of homicides and attempted
homicides, by FDCCA, now we apply DCCA cross-correlation coefficient, ρDCCA(n), in order to quantify the level of cross-
correlation between these crimes (new methodology). The statistical analysis of the relationship between homicides and
attempted homicides has identified persistent and positive cross-correlations at different time scales, Fig. 5. Specifically
the results show that the ρDCCA oscillates around 0.29, with ρDCCA(7) = 0.32, ρDCCA(90) = 0.18 (minimum value), and
ρDCCA(> 365) = 0.47 (maximum value).
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Fig. 5. DCCA cross-correlation coefficient ρDCCA × n for cross-correlation between homicides and attempted homicides in Salvador.

Table 3
Auto-correlation exponent αDFA , for homicides (+) and attempted
homicides (∗), and cross-correlation exponent λDCCA .

Time scale α+ α∗ λ

n ≤ 7 0.50 0.52 0.64
7 ≤ n ≤ 30 0.39 0.42 0.29
30 ≤ n ≤ 90 0.51 0.56 0.44
90 ≤ n ≤ 365 0.92 0.63 1.11
n ≥ 365 1.14 0.72 0.94

The cross-correlation coefficient ρDCCA between homicides and attempted homicides is positive at any time scale, then if
we have an increase (decrease) in homicides, we expect an increase (decrease) in attempted homicides. This positive value
says nothing about relationships of the series with lags/leads (in the cross-correlation sense), but it rather says that if the
seriesmoved together, they are likely tomove together even during the following periods, formore information see Ref. [63].

4. Conclusions

This paper examined the time-series of daily homicides and attempted homicides in the city of Salvador (BR) from2004 to
2011. Through theDFA, DCCA, and the cross-correlation coefficientρDCCA, we identified in these time-series auto-correlation,
cross-correlation (quantifying its level), and also seasonal components. DFA autocorrelation function oscillates between
anti-persistent, persistent, and memoryless case, depending on the time scale in question. DCCA cross-correlation analysis
showed that the time-series are cross-correlated, and using ρDCCA, we can see that cross-correlation is positive for all time
scales. Thus, if the homicide increases, then the attempted homicide also increases, and vice versa. Using DFA, DCCA, and
ρDCCA, we found several interesting properties at different time scales, mainly at the crosshatched column, Figs. 4 and 5,
where there is a transition from anti-persistent to persistent behavior. ρDCCA has been shown to be appropriate for this
analysis, because we can see the different time scales, and also remove the linear tendency.

We could also think how the air temperature influences the homicides or the attempted homicide, andmeasuring in this
way the influence of climate on crime. The preliminary results, not presented in this paper, shows that the air temperature
has no influence in the homicide or attempted homicide, in this case ρDCCA ≈ 0. Finally, this paper applied new techniques
to study criminological data from police departments. This type of analysis proved to be robust in this treatment, because it
could identify new seasonal components and quantify the level of cross-correlation between these data. In this sense, this
paper explored new directions for crime study, and we can apply these methods to study other types of crimes, in order to
aid the management of public security.
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