V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

HIGH PERFORMANCE CODE GENERATION FROM SYMBOLIC COMPUTING
Renato Miceli', Felippe Vieira?, Marcos de Aguiar®

SENAI CIMATEC, E-mail: renato.miceli@fieb.org.br
’SENAI CIMATEC, E-mail: felippe.vieira@fieb.org.br

’SENAI CIMATEC, E-mail: marcos.aguiar@fieb.org.br

RESUMO

Novas e radicais mudancas nas arquiteturas de computadores possibilitardo muitas
oportunidades no campo de aplicacbes computacionais de alto desempenho, ao mesmo
tempo em que irdo também demandar mudancas radicais do ponto de vista de
desenvolvimento de software, para tirar o maximo de proveito dessas novas plataformas.
Esse cenario traz a seguinte questdo: como conseguir portabilidade de desempenho para
diferentes (e em constante evolugdo) arquiteturas? Normalmente existe uma clara distingdo
de desempenho entre cédigos de facil manutencao e portabilidade, escritos em linguagens
de alto nivel, e cédigos paralelos altamente optimizados para certa arquitetura. A solugéo
proposta pelo OPESCI (Open portablE Seismic Imaging) framework é tirar proveito da
tecnologia de linguagens de dominio especifico (DSL) e de geracdo de codigo, para
introduzir maltiplas camadas de abstracdo de software. No nivel mais alto de abstracgéo,
desenvolvedores de aplicacdo irdo escrever algoritmos de forma clara, semelhante a
férmulas matematicas escritas a mao em um papel. Enquanto que no nivel mais baixo,
compiladores fonte para fonte irdo transformar essa DSL em cdédigo altamente optimizado
para uma arquitetura alvo e deve executar com desempenho préximo ao maximo, realista,
possivel para aquela aplicacdo. Diferentes geradores de codigos podem existir, enquanto a
camada de alto nivel consegue manter portabilidade de desempenho. O resultado é uma
separacao de conceitos, onde outras abordagens numéricas podem ser avaliadas e obter
desempenhos compativeis ou melhor do que codigos optimizados manualmente.

Palavras-Chaves: Imageamento sismico; Geracao de codigo; Stencil; Hpc; Otimizacéao
de codigo;

ABSTRACT

Upcoming disruptive changes to computer architectures offer many new opportunities for
developing high performance applications, but it also demanding disruptive changes in
software to achieve the full potential of the new hardware. Therefore, the question now is:
how we achieve an acceptable degree of performance portability across different (and rapidly
evolving) architectures? There is in general a sharp trade-off between easy to maintain,

576

V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

extensible portable software written using high-level languages, and highly optimized parallel
code for a target architecture. The solution proposed by the OPESCI (Open portable Seismic
Imaging) framework is to leverage domain specific languages (DSL) and code generation
software technologies to introduce multiple layers of software abstraction. At the highest level
of abstraction application developers will be able to write algorithms in a clear and concise
manner akin to how the algorithm might be written mathematically on paper. While at the
lower levels source-to-source compilers will explore a rich implementation space to transform
this DSL code into highly optimized code that can be compiled for a target platform to run at
near-to-peak performance. It will provide layers that decouple domain experts from code
tuning specialists, where different optimized code generator back ends can be replaced, and
the high level code attains its portability. The result is a separation of concerns where new
numerical approaches are readily evaluated and are capable of matching or outperforming
hand tuned code.

Keywords: Seismic imaging; Code generation; Stencil; Hpc; Code optimization;

1. INTRODUCTION

High performance computing is getting more and more relevant every day. It went out of the
academy and is becoming main stream and strategic in the high tech industry. It allows
researchers to simulate experiments that would be too expensive, or too risky, or unethical or
any combination of those. Big machines, also provides the computing power to solve very
large problems, like predicting orbits and gravitational interactions among billions of celestial
bodies.

Computing power keeps increasing at an accelerated pace, but because of the current
technology limits, this new performance comes with the price of greater architectural
complexity. In the past, the advance in speed was restricted mostly to a higher clock speed.
The software would just get faster automatically when the frequency and bus speeds were
incremented. Nowadays, because of the thermal properties of the materials used to build
processor and memories, the clock speed is halted, and the performance improvements are
mostly being achieved by the means of parallelization. Heterogeneity is also a big factor
today. Performance opportunities are also offered in the use of different hardware
components like GPU’s (graphics processing unity), coprocessors (many core architectures)
and FPGA (software programmable circuits)[1]. The learning curve to use all those
components effectively is already a big challenge, and, to aggravate the issue, the
optimization techniques can be quite different for each of these architectures. As the time
passes, techniques that were once successful, won’t work with new releases of the
hardware.

577

V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

With this current scenario, the software community must find new disruptive ways to harness
the great performance that modern hardware offers, and at the same time be able to
maximize the investment made in application code development.

Taking this situation under consideration, and also other issues that troubles the scientific
and high performance computing community, the OPESCI (Open Performance portablE
Seismic Imaging) initiative was created. The main goal of the project is to achieve high
performance code portability across different architectures. At the highest levels, domain
experts will use high level languages to describe solutions to their problem of study, while at
the lowest one, high performance coding specialist will write fine-tuned code to specific
architectures.

The domain experts (i.e. scientists, engineers) will write code using DSL (domain specific
languages)[2] without having to know in which platform this code will be executed. High
performance specialists will use every language and compiler that will help get the most of
the hardware. In between OPESCI will provide the abstraction layers to transform the DSL
code in the most optimized form possible, exploring every aspect of optimization
automatically. New backend plugins can be added to the platform to target different
architectures and resolution methods.

In the beginning the OPESCI framework will focus primarily in stencil computation. Stencil is
an integral part of applications in a number of scientific computing domains where each point
of a d-dimensional grid uses the value of itself and some groups of neighboring elements to
be repeatedly updated. It is an important computational pattern used in a variety of domains
such as electromagnets, solutions of partial differential equations using finite difference or
finite volume discretization, image processing and etc [3].

2, METHODOLOGY

The Project team is composed of different profiles: mathematicians, physicists, and computer
scientists.

Domain Expert main tasks are:

Develop and validate models in high level portable languages.
Test the platform.
Provide real world data to benchmark the software.

Computer Scientists main tasks are:
Benchmark codes that solves the models created by the domain expert team.

Look for ready to use tools that already exploit performance on modern hardware for
a given numerical method (i.e. finite difference, finite element).

578

V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

Devise a roofline model to have an expectation of how much performance
improvement can be achieved for the current code.

Tune code to get as close as possible to the roofline value, taking in consideration
that this model is not perfect and 100% performance matching is unlikely to be
achieved (due to different memory speeds and cache hierarchies not normally taken
into account by the available roofline models).

Design code generation interfaces that will allow contributors to plug in various back-
ends for different architectures.

The domain experts will help by developing high level code that will serve as the base for the
source generation. They will also check the correctness and effectivity of the generated code
and the results it calculates. Their input will also influence in which direction the project will
go, as they are the target audience to use the final product.

When the point comes that the abstraction interfaces are stable. The software development
team, will focus on porting, tuning and developing more and more back-ends to the platform.
New benchmarks will be made, and the tuning cycle will keep going for every new hardware
platform release.

The authors are currently trying out optimization strategies based on the latest academic
publications, as well as special code generators, with the goal to develop the first back end to
this framework. It’s being tested both in conventional CPU as well as in a Many-Core
Coprocessor. This module is platform specific and will be plugged in the low level layer of the
system.

Another important point to make is that this framework is being developed as a IPCC (Intel
Parallel Computing Center) initiative, and the resulting work will be made available to the
community as open source software. Other projects and researchers will be able to plugin
they’re own back ends, as well as to provide their high level modeling codes.

3. RESULTS

So far the Project is still at the beginning but some of these steps were already executed,
and are now being refined.

As first step we benchmarked existing solutions for stencils optimization. The goal was to
leverage existing solutions or improve them to use as back-ends for framework’s finite
difference kernel generator.

Three different solutions for stencil optimization were tested, as seen in figure 1. The
SDSLC[3] stencil compiler which applies a set of compiler transformations to generate
efficient code for multicore processors with short-vector SIMD instructions. The pluto[4][5] a
fully automatic source-to-source transformation framework that can optimize regular
programs (sequences of possibly imperfectly nested loops) for parallelism and locality

579

V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

simultaneously. Finally, the pochoir[6], which optimization technique translates the code on
an efficient parallel cache algorithm.

Stencil compiler benchmarks. Pocheir ve SDSLC vs Pluto

T T T T T T T
Pochoir m—
SDSLC
25 - Fluto . |

15

GFiopls

05 ~

RS R £
, %%% \ %%%0 A

Figure 1. Stencil compilers benchmark.

The algorithms used were the stencil to simulate the heat propagation in a medium. Its 3d
and 2d implementations were used, varying its grid size and keeping the time steps uniform
across all tests. In all tests, the pochoir stencil compiler was better than the other ones,
because its optimization technique consider both time and spatial domain that leverage a
better performance of stencil algorithms in modern architectures.

Even though pochoir outperformed other stencil compilers, manually developed code with
OpenMP had better results, as seen on figure 2. The data leads to the path of generating
regular OpenMP kernels, instead of pochoir DSL Stencils. Starting from these initial results,
the next steps to assembly the lower level code generation are being developed.

580

V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

Swencil compiler benchmarks. Pochoir vs Manual

GFiopls

n

“

%%% ‘%%% ”"%{%% %%% 4&%}% %%% %q%%
%, £ P =3

o, o,

-3 =] o

&,

=3

Figure 2. Performance comparison between pochoir and hand-made code with OpenMP.

First, the code generation tool using SymPy[7] (Python for symbolic computing) is being used
to already transform high level symbolic language code into OpenMP finite difference kernel
implementations. This tool also will enable develop plugins to translate its high level to others
stencil compilers language.

While domain specialists are working on models, a reference implementation for elastic wave
equation was developed and has been used as reference. The generated kernel for this
elastic wave equation model from SymPy is being benchmarked against the reference hand-
made code, as well as against other stencil compilers, like pochoir, to see how good it
perform against existing optimization back end solutions.

Once this last step is done, the next task will be to make sure that the generated code is
being fully vectorized and using every automatic optimization opportunity that the compiler
offers. After that more advanced techniques will follow, like doing better use of cache
memory and minimizing main memory access.

4, CONCLUSION

So far the Project showed good evolution and the team managed to have the basic workflow
working. Based on the result obtained from comparing the stencil compilers, OpenMP code
was chosen to be the first backend to attempt to be integrated with the framework. So,
additional improvements will be done progressively in order to get higher performances from
the generated code at specific architectures.

581

V WORKSHOP DE PESQUISA TECNOLOGIA E INOVAGAO (PTI)
I SIMPOSIO INTERNACIONAL DE INOVAGAO E TECNOLOGIA (SIINTEC)

10 e 11 de setembro de 2015 / Salvador, Bahia, Brasil

There is still more to be explored in terms of defining longer lasting interfaces for the
framework as well as exploring or developing more efficient optimization engines for a given
numerical method running for a specific architecture.

The team will also decide whether only SymPy and Firedrake UFL[8][9] DSL’s will be used or
other ones should also be adopted.

5. REFERENCES

'Barros, R. S., Geldermalsen, S., Boers, A. M. et al “Heterogeneous Platform
Programming for High Performance Medical Imaging.” Lecture Notes in
Computational Science (Springer) Volume 8374 (2014).

*Taha, W. M. “Domain-Specific Languages.” IFIP TC2 Working Conference (Oxford)
(2009).

3T. Henretty, J. Holewinski, R. Veras, F. Franchetti, L.N. Pouchet, J. Ramanujam, A.
Rountev, P. Sadayappan. “A Domain-Specific Language and Compiler for Stencil
Computations on Short-Vector SIMD and GPU Architectures,” Compilers for Parallel
Computing Workshop (CPC), July 2013.

4Bandishti, V., Pananilath, |. and Bondhugula, U. Tiling stencil computations to
maximize parallelism. In SC, 2012

SBondhugula, U., Hartono, A., Ramanujam, J. and Sadayappan, P. A practical
automatic polyhedral program optimization system. In PLDI, 2008.

6Tang, Y., Chowdhury, R., Luk, C., Leiserson, C. E. .“Coding stencil computations
using the Pochoir stencil-specification language”. In 3rd USENIX Workshop on Hot
Topics in Parallelism (HotPar'11), 2011

7Joyner, D., Certik, O., Muerer, A., Granger B. E. “Open Source Computer Algebra
Systems: Sympy.” ACM Communications in Computer Algebra Volume 45 (2011).

8Alnaes, M. S. “UFL: A Finite Element Form Language, Automated Solution of
Differential Equations by the Finite Element Method.” Lecture Notes in Computational
Science and Engineering (Springer) 84 (2012).

SAlnzes, M. S., A Logg, K. B. @lgaard, M. E. Rognes, and G. N. Wells. “Unified Form

Language: A domain-specific language for weak formulations of partial differential
equations.” ACM Transactions on Mathematical Software, 2014.

582

