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a b s t r a c t

Evolution of species is a complex phenomenon. Some theoretical models take into account
evolution of species, like the Bak–Sneppenmodel that obtain punctuated equilibrium from
self-organized criticality and the Penna model for biological aging that consists in a bit-
string model subjected to aging, reproduction and death. In this work we propose a simple
model to study different scenarios used to simulate the evolution of species. This model is
based on Darwin’s ideas of evolution. The present findings show that punctuated equilibria
and stasis seem to be obtained directly from the mutation, selection of parents and the
genetic crossover, and are very close to the fossil data analysis.

© 2011 Elsevier B.V.

Biological evolution takes place in terms of an intermittent burst of activity separating relatively long periods of
quiescence, rather than in a gradual manner [1,2]. Both theoretical and empirical studies of the last decades suggest that
the complex pattern of selection imposed on geographically structured populations by heterogeneous environments and
coevolution can paradoxicallymaintain stasis at the species level over long periods of time. By contrast, geneticmechanisms
are not known to explain species-wide stasis [3–6]. In this sense, an established concept of biological evolution is the
order–disorder conflict in biological evolution route to equilibrium. The Bak–Sneppen (BS)model [7] proposes the biological
evolution as a self-organized criticality system [7–9]. On the other hand, the Penna model for biological aging [10–13] is
based on Darwinian evolutionwithmutations and it is a representation of the Darwinian conflict. It has played a role similar
to the Ising model for magnetic systems in the sense that it is a minimal model that retains the essentials of Darwinian
dynamics. Like the Ising model, the Penna model uses binary variables to represent genes: 0 for ordinary genes and 1
for harmful ones. Originally, the Penna model focused on problems of biological aging. Furthermore, some applications
to several different evolutionary problems substantially increased the scope of the Penna model.

Our purpose here is to provide a different procedure to simulate the evolution of species based on Darwinian evolution,
using mutation, reproduction and crossover processes. The proposed model takes into account the ‘‘survival of the fittest’’
and some ideas present in Genetic Algorithms (GA). Two main differences can be observed in our model. The first one is
the fact that we simulate biological evolution of species by using an artificial adaptiveness genetic code and we impose the
selection of parent’s genes from the parent’s fitness (a mechanism like a natural selection). And, the second one is the fact
thatwe do not use a binary representation of the genes. Insteadwe use a very simple taxonomy to simulate gene evolution. A
commensurable taxonomy to evolution of species can be obtained fromMahalanobis distances [14]. Recently, temporal and
environmental (spatial) patterns of morphological change in two species of Middle Devonian brachiopods [3] was shown.
Eldredge et al. [3] found Mahalanobis values from canonical discriminant analysis of morphometric data show that this
distance ranges to values close to the interval [0, 6].

∗ Corresponding author at: Programa de Modelagem Computacional - SENAI - CIMATEC, 41650-010 Salvador, Bahia, Brazil.
E-mail addresses:mamoret@gmail.com (M.A. Moret), hbbpereira@gmail.com (H.B.B. Pereira).

0378-4371/© 2011 Elsevier B.V.
doi:10.1016/j.physa.2011.12.024

Open access under the Elsevier OA license.

Open access under the Elsevier OA license.

http://dx.doi.org/10.1016/j.physa.2011.12.024
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:mamoret@gmail.com
mailto:hbbpereira@gmail.com
http://dx.doi.org/10.1016/j.physa.2011.12.024
http://www.elsevier.com/open-access/userlicense/1.0/
http://www.elsevier.com/open-access/userlicense/1.0/


2804 M.A. Moret et al. / Physica A 391 (2012) 2803–2806

1. Description of the proposed model

Evolution of species is a complex phenomenon of biological interest. The simple procedure proposed suggests to us
that species have different evolutionary stages and stasis is observed if the mutation process has a very low probability of
happening.

In this paperwe use some ideas based on Genetic Algorithms (GA’s). Ref. [15] has proposed the GA [16] that is a stochastic
procedure of search. This procedure is based on Darwin’s ideas (i.e. it is based on mechanisms of natural selection and the
response of the genetic code). The use of a codified population of points allows the GA to employ the ideas of adaptation
and ‘‘crossover’’, which are essential in the biological processes. This type of algorithm normally uses a chain of bits to
represent each individual of the population. Classical GA uses chains of bits in all its processes (i.e. mutation, reproduction
and crossover). In the mutation process, some bits, randomly chosen, can be modified in all the individuals. This chain of
bits emulates the individual’s chromosome of the population in all GA. In the reproduction process, two individuals are
successively chosen for crossover until a new generation in the population is formed.

The procedure we are proposing is an iterative algorithm. The population is modified at each iteration and a new
generation is determined from this iterative process. It is interesting to comment that individuals of a generation t + 1 are
not necessarily ‘‘children’’ of the previous one (t). FromDarwin’s ideas, it is desirable that individuals of the population have
different degrees of adaptation to the environment. Then, we propose an algorithm based on Darwinian ideas to simulate
the evolution of species and we use a chain of values to represent the chromosome of each individual of the population. As
commented by Holland [3], two simple organism present Mahalanobis distances in values close to [0, 6]. Thus, the values
from 0 to 6 are used to specify the level of fitness, i.e. the evolutive genetic value in the ‘‘chromosome’’ of each individual.

In other words, we propose as chromosome a set of 32 alleles formed by the numbers (from 0 to 6) associated with each
level of fitness. These values in this set range from the value zero that represents a totally unfit allele to six that represents
complete fitness. We recall that if we use two bits (0 or 1) to represent unfitness (0) and fitness (1) the results follow the
same behavior, but this adapted taxonomy allows a marked gap between individuals that present worse and better fitness.

In order to simulate the ‘‘survival of the fittest’’, essential in the Darwinian proposal, we define the fitness probability (Pi)
of an individual (i) in any generation as:

Pi =
Qi

M
j=1

Qj

(1)

where M is the number of individuals, Qk =
Na

i=1 vi is the chromosome quality, Na is the number of alleles and vi is the
value of each allele.

Under these assumptions, our simple genetic procedure can be summarized as follows:

(1) Initial population: A set ofM individuals is randomly generated to initiate the simulation;
(2) Mutation process: With predefined probability of mutation (PMut ) randomly choose which individuals, xi(t) (i =

1, . . . ,M), will participate in the mutation process, then choose which genes will be changed;
(3) Reproduction process: Calculate the fitness probability (reproduction) for each individual and select a pair of individuals,

k (Pk) and l (Pl). The choice of pair k and l is due to the probability of how close they are to the greatest value calculated
in this generation, as previously proposed by Moret [17,18];

(4) ‘‘Crossover’’ process: Mix randomly the chains of ‘‘bits’’ of k and l, in order to produce two new individual candidates k∗

and l∗. These two candidates will compete among themselves to be born;
(5) Repeat the processes of reproduction and crossover until p = PCross × M (where PCross is a prescribed percent of M)

individuals be obtained. M − p individuals will be maintained live in the next generation. We randomly choose these
M − p individuals from their fitness probability obtained in the Step 3 (previous generation);

(6) Go back to the Step 2.

The mutation process is a stochastic process over the chromosome. Thus, mutation in the gene is a random process in a
specific allele. Its integer number ismodified to a randomly selected value in the interval [0, 6]. The reproduction process lets
more fit individuals to take part in the crossover. And, ‘‘crossover’’ procedure guarantees the parent’s genes are transferred
to the next generation. Fig. 1 shows the crossover process used in the evolutive algorithm.

2. Scenarios, simulations and discussions

It is highlighted here that, to simulate the genetic evolution process in accordance to the Darwinian perspective, two
important aspects must be taken into account: (i) an individual ‘‘parent’’ transmits its genetic characteristics and (ii) the
measurement of the fitness consists of the sum of the chromosome ‘‘alleles’’.

We have simulated different scenarios. In these simulations, for each initial population, the procedure was executed
using some different initial parameters (32 alleles randomly obtained; alleles varying from 0 to 6; and population from 2 to
500 individuals). It was observed that when the number of individuals is greater than 150 there is no significant changing in
the evolution behavior, showing non-dependence on the initial population to reach the ‘‘final’’ generation. For this reason,
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Fig. 1. Crossover process where the alleles are given by vi = 0, 1, . . . , 6. We recall that the new individual will be D (QD > QC ).
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Fig. 2. Evolution of individual fitness (faverage) as function of number of generations for the average fitness to PCross = 60% of Crossover and PMut = 0.005%
of mutation.

all results thatwill be presentedwere obtained from a population of 500 individuals. In order to follow the evolution process
we propose as fitness:

fi =
Qi

Na
. (2)

On the extreme situations, for example, PCross = 1% PMut = 1% or on the other one, PCross = 100% and PMut = 10% the
final population does not present stationary equilibria.

To some intermediate values of PCross local equilibria can be obtained. Fig. 2 depicts the evolution of value of fitness when
the value of PCross = 60% and PMut = 0.005% are kept fixed.

Fig. 2 shows that punctuated equilibrium occurs in different time of evolution of species. This behavior occurs if the
number of mutation is small. Thus, a very small percentage of individuals is involved in genetical improvement of the
population as whole. We recall that Fig. 2 has the same shape observed theoretically [7] or by ‘‘lineage through time’’
[23,24]. Thus, Fig. 2 presents exactly the same behavior observed by Reznick and Ricklefs [24] in their recent review entitled
‘‘Darwin’s bridge between microevolution and macroevolution’’.

Several studies have confirmed the widespread occurrence of lineage stasis and punctuation by cladogenesis in the fossil
record [1,2,19–21]. The stable lineages detected in fossil data sets appear to be, for themost part, species thatwere abundant,
widespread and participants in many local ecosystems.

Recently the hypothesis that the power law of the lifetime distribution could be simply a consequence of the branching-
like structure of single population dynamics rather than an effect of the interactions among different species [22] was
suggested. Our proposal is analyze the adaptation and speciation of evolution of specie.Wenote that the rate of fitness of new
lineages is initially high and then levels off in last steps of evolution. From the proposed approach stasis and punctuations
are observed in the evolution (Fig. 2) by using only the Darwinian perspective. It is worthwhile to connect our approachwith
a model for a phylogenetic tree for North American wood warblers based on more than 9 kb of mitochondrial and nuclear
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intron DNA sequence [23,24]. The ‘‘lineage through time’’ plot [24] derived from the phylogeny presents the same shape
that we obtain (Fig. 2).

3. Concluding remarks

In summary, we proposed a simplemodel to analyze the evolution of species. Despite of its simplicity this model leads to
consistent evolution processes.We observed that an evolution process just based onmutationwill be a random-like process.
On the other hand, an evolution process for which only the fitness and crossover take place will lead to a final generation
with genetic material of the individuals present in the initial population. For these extreme situations, punctuated equilibria
are improbable to take place. Therefore, a competition between mutation, reproduction and crossover must exist as long as
a real evolution of species is focused. The proposed model attains these requirements. Furthermore, the mutation process
seems to be themost important feature to differentiate species. We recall that the probability of a mutation process must be
very small. Thus, in our simulations with 32 alleles and population with 500 individuals, only one or two alleles mutate in
each generation in order for stasis to occur; consequently, punctuated equilibria must occur in different times of evolution.

History of individual lineages revels prolonged intervals with little or no change (equilibrium or stasis) interspersed
with intervals of rapid change (punctuation) that are associated with origin of new species [1]. Our results show that stasis
and punctuation can be obtained from natural selection, because selection of pairs i, j (reproduction process) for crossover
depend on the fitness of (fi, fj). If individuals increase their fitness, due the mutation process, they are responsible for the
punctuations in different times of evolution. On the other hand, the fossil records reveal that some lineages rapidly diversify
into new species whereas others decline. Combining the proposed evolution model with the Penna model [10] we can
simulate the reason some species decline.

Finally, we observe that existence of small mutations, selection of pairs and crossover seem to be the keys that cause
species-wide stasis. Mutations can make the entire population improves itself, even if these mutations increase the fitness
of a small number of individuals. Furthermore, the self organized criticality (SOC) behavior observed in BS model [7] seems
to be due the small number of individuals better fitted in the population. This small number of individuals behaves like an
attractor to the evolution process. Thus, these results seem to represent a phylogenetically refined SOC.
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