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a b s t r a c t

Westudy in this paper the cross-correlation between self-affine time series of real variables
recorded simultaneously in cases of taxi accidents. For this purpose, we apply the DCCA
method and show that the cross-correlation can be divided into three distinct groups, if we
look for the detrended covariance function, i.e., long-range cross-correlations, short-range
cross-correlations and no cross-correlations. Finally, it will be seen that the detrended
covariance function is robust, if compared with other methods, in identifying these types
of cross-correlations.

© 2011 Elsevier B.V.

1. Introduction

Many time series exhibit complex behavior characterized by long-range power-law correlations [1–4]. These time series
can be observed using time records or series of observations. In order to study time series, the autocorrelation function
is a possible method for time series analysis. We know that the autocorrelation is a measure that tells how much the
value of a realization is able to influence its neighbors. However, a lot of real time series are nonstationary, thus the mean,
standard deviation (sd), and highermoments, or the autocorrelation functions are not invariant under time translation [5–7].
Nonstationarity, an important aspect of complex variability, can often be associated with different trends in the signal or
heterogeneous segments (patches) with different local statistical properties. To address this problem, detrended fluctuation
analysis (DFA) was developed to accurately quantify long-range power-law correlations embedded in a nonstationary time
series [8,9]. This method provides a single quantitative parameter, the scaling exponent α, to quantify the correlation
properties of a signal. One advantage of the DFAmethod is that it allows the detection of long-range power-law correlations
in noisy signals with embedded polynomial trends that can mask the true correlations in the fluctuations of a signal [7,10].
Thismethodhas been successfully applied to awide range of simulated and real time series [11–14]. However, there are cases
wheremany variables are recorded simultaneously, forming time series of equal lengthN (number of points recorded). These
time series can be cross-correlated, as in [15,16] or [17–20], and in this case there are differentmethods for cross-correlation
analysis [21–31]. One of the most recent methods to investigate long-range cross-correlation is detrended cross-correlation
analysis (DCCA) [32], a generalization of the DFA method, briefly presented in Section 3.

2. Data

We know that a taxi is a vehicle with a very high daily use, compared to a private vehicle, and this fact is one of reasons
why insurance companies charge more for insurance, called the premium, causing them to be much more expensive than
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Fig. 1. Original time series of taxi accidents recorded by the CEAT for: (a) (◦) taxi driver age, (b) (•) time of driver licence, (c) (�) year of taxi manufacture,
(d) (♦) time of taxi repair, and (e) (�) cost of taxi repair (in this data range 1 US$ u 1.70 R$). These data correspond to occurrences collected between Aug.
18, 2002 and May 21, 2010, with N = 1250.

private vehicles. Thus, it is better that taxi drivers form cooperatives, because a cooperative, unlike an insurance company,
does not take a profit. In this sense, our objective in this paper is to study the cross-correlation between the time series of
taxi accidents recorded simultaneously by the CEAT, the special centre for taxi driver support (taxi cooperative with ∼575
associates), located in the city of Salvador, Bahia (Brazil).

Thus, for each accident, a report is made by the CEAT, where several variables are simultaneously recorded. In this paper
we analyse five: (a) taxi driver age, (b) time of driver licence, (c) year of taximanufacture, (d) time of taxi repair, and (e) cost of
taxi repair. The datawere collected betweenAugust 18, 2002 andMay 21, 2010 (see Fig. 1). For amore complete visualization
we present in Fig. 2 the histogram for these nonstationary time series (not all variables follow a normal distribution). As we
all know, a car accident is an unpleasant and unexpected event, which can be generated for different reasons, such as the
negligence and carelessness of the driver, problems in the road, and many others. In this way, we can assume that the car
accident was generated by a random occurrence. In order to verify if this statement is true or not, in this paper we study the
the autocorrelation and the cross-correlation by the DFA and DCCA methods. A brief description of the DFA and the DCCA
methods are presented in the section below.

3. The method

The DFA method [8,9] was proposed to analyse long-range correlations in nonstationary time series and provide a
relationship between FDFA(n) (root mean square fluctuation function) and the box size n. If there is long-range correlation,
then FDFA(n) ∝ nα . In this way, α is the self-affine scaling exponent such that if α = 0.50 the signal is uncorrelated, if
α < 0.50 the correlation in the signal is antipersistent, and if α > 0.50 the correlation in the signal is persistent. Several
applications have been made via DFA [6–14].

DCCA [32] is a generalization of the DFAmethod and is based on detrended covariance; it has many applications [33,34].
Thismethod is designed to investigate power-law cross-correlations between different simultaneously recorded time series
in the presence of nonstationarity. They consider two long-range cross-correlated time series {yi} and {y′

i} of equal length
N , compute two integrated signals Rk ≡

∑k
i=1 yi and R′

k ≡
∑k

i=1 y
′

i , where k = 1, . . . ,N . Next we divide the entire time
series into N − n overlapping boxes, each containing n + 1 values. For both time series, in each box that starts at i and ends
at i + n, we define the local trend,Rk,i andR′

k,i(i ≤ k ≤ i + n), to be the ordinate of a linear least-squares fit. We define
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Fig. 2. Histograms for: (a) taxi driver age, (b) time of driver licence, (c) year of taximanufacture, (d) time of taxi repair, and (e) cost of taxi repair. Continuous
lines in (a), (b), and (c) correspond to a Gaussian fit with adjusted R-square, mean and standard error. Cases (d) (time of taxi repair) and (e) (cost of taxi
repair) do not fit a Gaussian curve. In this figure, (f) represents the histogram for number of accidents per taxi registry (rank of accidents), and the continuous
line represents an exponential decay (only a guide for the eyes).

the detrended walk as the difference between the original walk and the local trend. Next we calculate the covariance of
the residuals in each box f 2DCCA(n, i) ≡ 1/(n + 1)

∑i+n
k=i(Rk −Rk,i)(R′

k −R′

k,i). Finally, we calculate the detrended covariance
function by summing over all overlapping N − n boxes of size n,

F 2
DCCA(n) ≡ (N − n)−1

N−n−
i=1

f 2DCCA(n, i). (1)

When only one random walk is analysed (Rk = R′

k), the detrended covariance F 2
DCCA(n) reduces to the detrended variance

F 2
DFA(n) used in the DFA method. If self-affinity appears, then F 2

DCCA(n) ∼ n2λ.
When F 2

DCCA(n) is negative for every n, onemay present−F 2
DCCA(n)×n in a log–log plot. Jun et al. [35] proposed a detrended

cross-correlation approach to quantify the correlations between positive and negative fluctuations in a single time series,
and applied their approach to physiological and financial time series. Zebende andMachado Filho [36] show that it is possible
to identify seasonal components with the DCCA method.

4. Results and conclusions

First, in order to identify long-range autocorrelations,we apply theDFAmethod for the variables recorded simultaneously
in taxi accidents by the CEAT (see Fig. 3). In this figure we can see that FDFA(n) ∝ nα , and the signal is very close to α = 0.50
(uncorrelated time series) for taxi driver age, time of driver licence, time of taxi repair, and cost of taxi repair. While for the
year of taxi manufacture, the value of α is 0.67 (this data identifies the renewal rate of the taxi fleet). In the sense of the
DFAmethod, a taxi accident is essentially a random event. Factors such as culture, economics, climate, among others, do not
generate memory effects in this system.

But if we compare these time series, we can see that some of themhave cross-correlations.With the intention of checking
their cross-correlations, we implement the DCCA method. The results of the DCCA analysis are found in Fig. 4 for cross-
correlations between:
1. taxi driver age × time of driver licence (�),
2. taxi driver age × year of taxi manufacture (◦),
3. taxi driver age × time of taxi repair (▽),
4. taxi driver age × cost of taxi repair (♦),
5. time of driver licence × year of taxi manufacture (×),
6. time of driver licence × time of taxi repair (⊗),
7. time of driver licence × cost of taxi repair (�),
8. year of taxi manufacture × time of taxi repair (H),
9. year of taxi manufacture × cost of taxi repair (�),

10. time of taxi repair × cost of taxi repair (∗).
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Fig. 3. DFA method applied to the case of taxi accidents for: (a) taxi driver age, (b) time of driver licence, (c) year of taxi manufacture, (d) time of taxi
repair, and (e) the cost of taxi repair. For every case we show the angular coefficient for a linear adjust, e.g., the value of αDFA .

a
b

c d

Fig. 4. DCCA analysis in case we have: (a) long-range cross-correlation, (b) positive short-range correlations, (c) negative short-range correlations, and (d)
no cross-correlation between the time series.

If we look the behavior of the detrended covariance function in Fig. 4, we can divide the results into three distinct groups:

(i) where long-range cross-correlations are present (F 2
DCCA ∝ n2λ) (Fig. 4(a));

(ii) where there is a short-range cross-correlations, here with positive cross-correlation (see Fig. 4(b)) and negative cross-
correlation (see Fig. 4(c));

(iii) where the detrended covariance function oscillates around zero, and we identify no cross-correlations between the
time series (Fig. 4(d)).

Thus, specifically the cross-correlation between taxi driver age× time of driver licence (�) and time of taxi repair× cost
of taxi repair (∗) (Fig. 4(a)), shows an evident long-range cross-correlation (group i) with λ� = 0.52 and λ∗ = 0.48 (the
power-law was measured by a linear fit with χ2 > 0.98 and sd < 0.02). However, by the DCCA method, we can see that
there are other kinds of behavior in taxi accidents. For example, in Fig. 4(b) short-range cross-correlations appear between
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Table 1
Matrix of cross-correlations between time series of taxi accidents recorded by the CEAT. The upper matrix represents the DCCA analysis, while the lower
matrix represents the classical correlation coefficient (see Fig. 5). Here in this table LR = long-range cross-correlation, SR = short-range cross-correlation,
and NC = no cross-correlation between the time series.

Age Lic. Man. Time Cost

Age ♯♯♯ LR (λDCCA = 0.52) SR (+) NC SR (−)

Lic. 0.85 ♯♯♯ SR (+) NC NC
Man. 0.12 0.16 ♯♯♯ NC NC
Time −0.01 0.01 0.10 ♯♯♯ LR

(λDCCA = 0.48)
Cost −0.04 −0.02 0.07 0.44 ♯♯♯

Fig. 5. This figure shows one variable against the other. Also shown in this figure is the R value and the p-value for the linear adjust (continuous line).

taxi driver age× year of taxi manufacture (◦) and also time of driver licence× year of taxi manufacture (×). From this figure
we can see that there is a slight tendency for taxi drivers with more experience to remain for a longer period of time with
their taxi. Fig. 4(c) shows a short-range cross-correlation between taxi driver age × cost of taxi repair (♦), but we can prove
by the DCCA method that this cross-correlation is negative. This figure presents a tendency for older taxi drivers to spend
less money at the time of taxi repair, but as in Fig. 4(b), this cross-correlation is not long-range. Also, by the DCCA method,
we can see that there is no cross-correlation between taxi driver age × time of taxi repair (▽), time of driver licence × time
of taxi repair (⊗), time of driver licence × cost of taxi repair (�), year of taxi manufacture × time of taxi repair (H), or year
of taxi manufacture × cost of taxi repair (�).

More succinctly, the DCCA cross-correlation analysis for taxi accidents can be summarized in Table 1.
In order to make a comparison between the methods, we plot one variable against the other (see Fig. 5 and Table 1

lower matrix). In this figure we propose a linear fit (continuous line) with the correlation coefficient values R, as well as
the p-value. The results are equivalent to those obtained by the DCCA method (Fig. 4), but the DCCA is is more effective at
identifying types of cross-correlation, especially because we can see F 2

DCCA for many time scales, and identify self-affinity
in these time series. We can remember that the correlation coefficient detects only linear dependencies, while the DCCA
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Fig. 6. The Qcc(m) qualitative test for cross-correlation between time series, where m is the number of degrees of freedom. The data are relative to the
cross-correlations indicated in Fig. 4 (a)–(d). The dashed line denotes the critical values for the χ2(m) distribution at the 5% level of significance.

method can remove polynomial trends. Later, we also test the cross-correlations analysis by the QCC (m) function [34], for
different choices of time lags (see Fig. 6). We can see that the qualitative test QCC (m) [34] agrees with the quantitative DCCA
cross-correlation method.

In conclusion, the DFAmethod indicates the presence of self-affinity in time series of taxi accidents, and the value of theα
exponent is very close to 0.50 (uncorrelated time series), except for the year of taximanufacture, where the value ofα is 0.67
(this data can be identified with the renewal rate of the taxi fleet). In the sense of the DFAmethod, our analysis shows that a
taxi accident is essentially a random event. On the other hand, with the DCCAmethod we can classify the cross-correlations
into three types of groups, with long-range power-law cross-correlations, short-range cross-correlations, and one group
where there are no cross-correlations. Finally, the data analysis using the DCCA method can lead to significant economic
and social effects if, for example, we remember that the CEAT (companies) add value to the premium for a taxi, taking into
account these variables. The DCCA method is shown here to be very consistent for data analysis and new observations can
be found, as in this paper for taxi accidents.

Acknowledgements

We wish to thank the CEAT and FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia).

References

[1] C.-K. Peng, S.V. Buldyrev, A.L. Goldberger, S. Havlin, F. Sciortino, M. Simons, H.E. Stanley, Nature (London) 356 (1992) 168.
[2] H.E. Stanley, S.V. Buldyrev, A.L. Goldberger, Z.D. Goldberger, S. Havlin, R.N. Mantegna, S.M. Ossadnik, C.-K. Peng, M. Simons, Physica A 205 (1994) 214.
[3] R.F. Voss, Phys. Rev. Lett. 68 (1992) 3805.
[4] G.F. Zebende, P.M.C. de Oliveira, T.J.P. Penna, Phys. Rev. E 57 (1998) 3311.
[5] R.L. Stratonovich, Topics in the Theory of Random Noise, Vol. 1, Gordon and Breach, New York, 1981.
[6] A. Witt, J. Kurths, A. Pikovsky, Phys. Rev. E 58 (1998) 1800.
[7] K. Hu, P.Ch. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Phys. Rev. E 65 (2002) 041107.
[8] C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49 (1994) 1685.
[9] C.-K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5 (1995) 82.

[10] K. Hu, P.Ch. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Phys. Rev. E 64 (2001) 011114.
[11] S.V. Buldyrev, A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.-K. Peng, M. Simons, H.E. Stanley, Phys. Rev. E 51 (1995) 5084.
[12] M.A. Moret, G.F. Zebende, E. Nogueira Jr., M.G. Pereira, Phys. Rev. E 68 (2003) 041104.
[13] G.F. Zebende, M.G. Pereira, E. Nogueira Jr., M.A. Moret, Physica A 349 (2005) 452.
[14] G.F. Zebende, M.V.S. da Silva, A.C.P. Rosa Jr., A.S. Alves, J.C.O. de Jesus, M.A. Moret, Physica A 342 (2004) 322.
[15] L. Laloux, P. Cizeau, J. Bouchaud, M. Potters, Phys. Rev. Lett. 83 (1999) 1467.
[16] V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, H.E. Stanley, Phys. Rev. Lett. 83 (1999) 1471.



G.F. Zebende et al. / Physica A 390 (2011) 1677–1683 1683

[17] W.C. Jun, G. Oh, S. Kim, Phys. Rev. E 73 (2006) 066128.
[18] M. Campillo, A. Paul, Science 299 (2003) 547.
[19] P. Samuelsson, E.V. Sukhorukov, M. Büttiker, Phys. Rev. Lett. 91 (2003) 157002.
[20] W.-X. Zhou, Phys. Rev. E 77 (2008) 066211.
[21] A.L. Edwards, An Introduction to Linear Regression and Correlation, W. H. Freeman, San Francisco, 1976.
[22] M.R. Spiegel, Theory and Problems of Probability and Statistics, 2nd ed., McGraw-Hill, New York, 1992.
[23] T.S. Rao, M.B. Priestly, O. Lessi, Applications of Time Series Analysis in Astronomy and Meteorology, Chapman & Hall, Boca Raton, FL, USA, 1997.
[24] R.H. Shumway, D.S. Stoffer, Time Series Analysis and its Applications, with R Examples, 2nd ed., Springer-Verlag, New York, 2000.
[25] R.N. Mantegna, Eur. Phys. J. B 11 (1999) 193.
[26] V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, T. Guhr, H.E. Stanley, Phys. Rev. E 66 (2002) 066126.
[27] L. Kullmann, J. Kertesz, K. Kaski, Phys. Rev. E 66 (2002) 026125.
[28] A. Cottet, W. Belzig, C. Bruder, Phys. Rev. Lett. 92 (2004) 206801.
[29] T. Mizunoa, H. Takayasu, M. Takayasu, Physica A 364 (2006) 336.
[30] B. Podobnik, D.F. Fu, H.E. Stanley, P.Ch. Ivanov, Eur. Phys. J. B 56 (2007) 47.
[31] K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100 (2008) 228501.
[32] B. Podobnik, H.E. Stanley, Phys. Rev. Lett. 100 (2008) 084102.
[33] B. Podobnik, D. Horvatic, A.M. Petersena, H.E. Stanley, PNAS 106 (52) (2009) 22079.
[34] B. Podobnik, I. Grosse, D. Horvatic, S. Ilic, P.Ch. Ivanov, H.E. Stanley, Eur. Phys. J. B 71 (2009) 243.
[35] W.C. Jun, G. Oh, S. Kim, Phys. Rev. E 73 (2006) 066128.
[36] G.F. Zebende, A. Machado Filho, Physica A 388 (2009) 4863.


	Study of cross-correlation in a self-affine time series of taxi accidents
	Introduction
	Data
	The method
	Results and conclusions
	Acknowledgements
	References


